A mean field approach for optimization in discrete time
نویسندگان
چکیده
This paper investigates the limit behavior of Markov decision processes made of independent objects evolving in a common environment, when the number of objects (N) goes to infinity. In the finite horizon case, we show that when the number of objects becomes large, the optimal cost of the system converges to the optimal cost of a discrete time system that is deterministic. Convergence also holds for optimal policies. We further provide bounds on the speed of convergence by proving second order results that resemble central limits theorems for the cost and the state of the Markov decision process, with explicit formulas for the limit. These bounds (of order 1/ √ N) are proven to be tight in a numerical example. One can even go further and get convergence of order √ logN/N to a stochastic system made of the mean field limit and a Gaussian term. Our framework is applied to a brokering problem in grid computing. Several simulations with growing numbers of processors are reported. They compare the performance of the optimal policy of the limit system used in the finite case with classical policies by measuring its asymptotic gain. Several extensions are also discussed. In particular, for infinite horizon cases with discounted costs, we show that first order limits hold and that second order results also hold as long as the discount factor is small enough. As for infinite horizon cases with non-discounted costs, examples show that even the first order limits may not hold.
منابع مشابه
A novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملA Robust Control Design Technique for Discrete-Time Systems
A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish all the design criteria. A numerical example is given to illustra...
متن کاملEstimation of Software Reliability by Sequential Testing with Simulated Annealing of Mean Field Approximation
Various problems of combinatorial optimization and permutation can be solved with neural network optimization. The problem of estimating the software reliability can be solved with the optimization of failed components to its minimum value. Various solutions of the problem of estimating the software reliability have been given. These solutions are exact and heuristic, but all the exact approach...
متن کاملTime Management Approach on a Discrete Event Manufacturing System Modeled by Petri Net
Discrete event system, Supervisory control, Petri Net, Constraint This paper presents a method to manage the time in a manufacturing system for obtaining an optimized model. The system in this paper is modeled by the timed Petri net and the optimization is performed based on the structural properties of Petri nets. In a system there are some states which are called forbidden states an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Event Dynamic Systems
دوره 21 شماره
صفحات -
تاریخ انتشار 2011